Retention indexes ( RI ) of solvents on phase RTX-1701

Liquid phase RTX-1701 from Restek is one of the most suitable for application in GC analyses of organic solvents.  This study is about GC separation of mixtures of organic solvents on 0.25mm ID capillary column installed into Varian 3400 GC, as a detector was used  Finnigan MAT ion trap mass-spectrometer ITS40.  Liquid phase film thickness is 1 um, column length 30m.  Owen of the gas chromatograph programmed from 50 deg. C  ( 1 minute ),  8 deg/min to 180 deg.C.

As a standard solution used C5 – C14 mixture of n-Alkanes with each component content about  200 ppm ( wt )  in HPLC grade Acetonitrile, or 156 mg per ml, or  156 ng per 1 ul.  Injector of GC was  adjusted to split ratio 1:50, so as a result each alkane’s peak  load was about 3 ng if 1 ul of the standard solution is injected.

To determine RI index of solvents,  special sample solution was prepared  by mixing 0.2 ul of each solvent standart ( min 99 % purity ), same amount of n-Octane was added  as  internal standard.  No solvent was used in this case and for injecting used headspace sample – by adding of 0.5ul of test mixture to 12ml glass bottle ( with laboratory air inside ) and 50 ul of this headspace sample was injected into CG.

At the same time, if peak square of each solvent is measured , we can determine relative intensity indexes K  for MS detector to each sample solution component.  Values of K we can use later for quantitative analyses of a mixture with  unknown composition using same HS method of sample preparation and using n-Octane as internal standard.

Most popular solvents for paits were used to prepare test sample, here is list of solvents for determination, totally 27 components:

  • n-Octane ( internal standard )
  • Methanol
  • Ethanol
  • n-Propanol
  • IPA ( iso-Propyl Alcohol )
  • n-Butanol
  • iso-Butanol
  • 2-Butanol
  • 1-Methoxy-2-Propanol
  • 2-Ethoxy-1-Ethanol
  • Acetonitrile
  • Acetone
  • 2-Butanone ( MEK )
  • Cyclohexane
  • Methylene Chloride
  • iso-Octane
  • 1,4-Dioxane
  • n-Butyl-Acetate
  • iso-ButylAcetate
  • EthylAcetate
  • MethylAcetate
  • MTBE
  • Diisopropyl Ether
  • 1-Methoxy-2-Propyl Acetate
  • Toluene
  • p-Xylene
  • Cumene

50 ul of  this mixture’s headspace contains about 120 ng of each component, what after  1/50 split in injector is acceptable load for 1 um liquid phase film.

Now about the tuning of mass-spectrometer. It was made using Varian Saturn 5.2 software:

  • manifold temperature – 220 deg C
  • transfer line temperature – 230 deg C
  • filament emission current – 20 uA
  • multiplier voltage – 1550 Volts
  • AGC target TIC – 20 000 counts
  • one microscan time – 100 us
  • scans per second – 3

Varian  3400 CG injector temperature 250 deg.C, injector 1075 type with split valve ( open ), inlet helium pressure 12 PSI. For injection is used Hamilton 1ul ( for  liquids ) and 100 ul  ( for headpace ) syringe with 70mm needle.

Table of the components content on test mixture of 27 compoments

g/cm cub ml wt, g % wt  ug/1ul Peak load
ng
n-Octane 0.703 0.2 0.1406 3.07 26.0 108 2.2
iso-Octane 0.69 0.2 0.138 3.01 25.6 106 2.1
Cyclohexane 0.774 0.2 0.1548 3.38 28.7 119 2.4
Toluene 0.867 0.2 0.1734 3.78 32.1 134 2.7
p-Xylene 0.861 0.2 0.1722 3.76 31.9 133 2.7
Cumene 0.863 0.2 0.1726 3.76 32.0 133 2.7
Acetonitrile 0.785 0.2 0.157 3.42 29.1 121 2.4
Methanol 0.791 0.2 0.1582 3.45 29.3 122 2.4
Ethanol 0.78 0.2 0.156 3.40 28.9 120 2.4
n-Propanol 0.803 0.2 0.1606 3.50 29.7 124 2.5
iso-Propanol 0.785 0.2 0.157 3.42 29.1 121 2.4
n-Butanol 0.81 0.2 0.162 3.53 30.0 125 2.5
iso-Butanol 0.802 0.2 0.1604 3.50 29.7 124 2.5
2-Butanol 0.806 0.2 0.1612 3.52 29.9 124 2.5
1-Methoxy-2-Propanol 0.913 0.2 0.1826 3.98 33.8 141 2.8
MTBE 0.741 0.2 0.1482 3.23 27.4 114 2.3
DiisoPropyl Ether 0.725 0.2 0.145 3.16 26.9 112 2.2
1,4-Dioxane 1.033 0.2 0.2066 4.51 38.3 159 3.2
Methyl Acetate 0.938 0.2 0.1876 4.09 34.7 145 2.9
Ethyl Acetate 0.895 0.2 0.179 3.90 33.1 138 2.8
n-Butyl Acetate 0.881 0.2 0.1762 3.84 32.6 136 2.7
iso-Butyl Acetate 0.87 0.2 0.174 3.80 32.2 134 2.7
1-Methoxy-2-Propyl Acetate 0.966 0.2 0.1932 4.21 35.8 149 3.0
2-EthoxyEthanol 0.93 0.2 0.186 4.06 34.4 144 2.9
Acetone 0.786 0.2 0.1572 3.43 29.1 121 2.4
2-Butanone 0.8 0.2 0.16 3.49 29.6 123 2.5
Methylene Chloride 1.326 0.2 0.2652 5.78 49.1 205 4.1
  SUM 0.849 5.4 4.5848 ng/1ul ng, split 1/50
g/cm.cub ml g 50 ul of HS ( 1ul/12ml)

Resulting figures are listed below.

First of all it is chromatogramm of standard solution C5 – C14, on Y axis is TIC ( Total Ion Current ):

C5_C14

and table of retention times:

Carbon N RT, min
4 1.214
5 1.961
6 2.708
7 4.02
8 5.956
9 8.182
10 10.469
11 12.683
12 14.784
13 16.761
14 18.78
15 20.799

Values for first and last rows are obtained by extrapolation.

Chromatogram of the mixture of 27 compoments:

27_labels

As seen,  three components –  IPA,  Methyl Acetate and MTBE ( mentioned in sequence as RI grows ) are not separated on this column and comes out as one peak. In AMDIS using SIM plots and data from mass-spectra of three above mentioned substances ( m/z=45 is main peak for IPA – red curve, m/z=43 is  peak for Methyl Acetate – yellow curve, and m/z=73 is main peak for MTBE – blue curve ) we still can get both three components separated and to calculate their RT and RI:

MTBE_IPA_MetAc

and finally – table of RI ( Retention Indexes ) of all solvents and calculated relative to n-Octane index K, which shows, how much times intensity of the substance ( TIC )  is higher ( if K < 1 ) or lower ( if K > 1 ), then intensity of the same amount (  by wt ) of n-Octane. As a result for future analyses we have  possibility  of quantification for  chromatograms with n-octane as the internal standard.

Retention Time (min.) Area RI g K relative
to n-Octane
1.933 59870 498 Methanol 0.1582 6.98
2.369 335630 557 Ethanol 0.156 4.10
2.647 1013000 594 Acetone 0.1572 2.16
2.695 527600 601 IPA 0.157 2.20
2.724 3550283 603 Methyl Acetate 0.1876 1.59
2.735 3696900 604 MTBE 0.1482 1.50
2.85 2198000 612 Methylene Chloride 0.2652 0.47
2.959 1717000 621 Diisopropyl Ether 0.145 0.33
3.134 425955 634 Acetonirtile 0.157 1.43
3.583 286471 668 n-Propanol 0.1606 2.17
3.708 2396000 678 Cyclohexane 0.1548 0.25
3.778 685293 683 Ethyl Acetate 0.179 1.01
3.848 1924000 688 iso-Octane 0.138 0.28
3.98 470826 698 Butanone-2 0.16 1.32
4.092 362567 705 2-Butanol 0.1612 1.72
4.7 416271 736 iso-Butanol 0.1604 1.49
5.41 370475 773 1-Methyl-2-Propanol 0.1826 1.91
5.448 455108 775 n-Butanol 0.162 1.38
5.772 198077 792 1.4-Dioxane 0.2066 4.04
5.938 545056 800 n-Octane 0.1406 1.00
6.421 313887 823 EthylCellosolve 0.186 2.30
6.56 473259 829 Toluene 0.1734 1.42
6.859 472836 842 iso-Butyl Acetate 0.174 1.43
7.811 460222 885 n-Butyl Acetate 0.1762 1.48
8.908 644390 934 para-Xylene 0.1722 1.04
9.535 580913 961 MPA 0.1932 1.29
10.124 853490 987 Cumene 0.1726 0.78

K indexes for IPA ( m/z 45), Methyl Acetate ( m/z=75 ) and MTBE ( m/z=73 ) have been calculated for SIM mode plots.

Thanks to Dmitrijs Dmitrijevs, who have helped me to find some pure solvents for making standard mixtures.

************************************************************************************************

Отчет о прослушивании четырех аудиосистем

Вчера мы снова собрались с друзьями чтобы пообщаться и более организованно сделать прослушивание – с записью оценок. И это  – отчет о том, что получилось.

О системах, которые участвовали в конкурсе.

  •  Ч Д – это сокращение системы будет и дальше в таком виде. Нет, это не Черная Дыра, это Черный дрозд. Источник – компьютер  e-Comstation, самодельный ЦАП на АД1955, и сам каскодный усилитель Черный Дрозд  и акустика – щиты на 2А12.

4_D_IMG-20230731-WA0015

  •  ГМ70 – источник СД проигрыватель  JVC XL – Z611, усилитель – этажерка  ,  акустика – реставрированные колонки 40АС-8 ( закрытый ящик ). Ну да, во время прослушивания конечно СД- проигрыватель не стоял вот так вот на колонке…. :-))

DSC02788_res_etazerka_40AS_8

  •  6С33С  – источник – СД проигрыватель Onkyo CR-305FX, предусилитель  – самодел на 4П1Л, усилитель – моноблоки,  однотакт по схеме Вейсета на половинке 6С33С, акустика – щиты на китайском широкополоснике Цао с активным басовиком Eminenence Alpha 15″.

6C33C_IMG-20230731-WA0014

  •   Д Т  – источник – СД проигрыватель Denon DCD-1500AE, предусилитель – оригинальный DYNA Stereo Preamp, усилитель – мною собранный кит от Боба Латино, копия 70-ваттного двухтакта Dynaco ST70, акустика – 3-х полосные напольные колонки Phonar, фазоинвертор.

 

Двухтакт, собранный из деталей набора от Dynaco ST-70 http://klimanski.com/?p=1238

Двухтакт, собранный из деталей набора от Dynaco ST-70 http://klimanski.com/?p=1238

Что оценивалось – динамика, прозрачность, детальность, слитность, подача баса, верхов и середины, объемность и тембральный баланс – всего 9 параметров. Оценки по 5- бальной системе.

Участвовали 4 человека,  на четрех треках  –  инструментальный джаз, классика со скрипкой,  и по одному треку из   менее легких жанров с женским и мужским вокалом.

  1.  Imants Skuja –  саксофон,  Ole Guapa,  CD диск
  2.  Andeano Chelentano, d’Animale
  3.  Diana Crell
  4.  Чайковский П.И.   Концерт для скрипки с оркестром.                                                                                                                                                                                                                                                                       То есть каждый усилитель максимально по каждому из 9-ти параметров мог получить  –  4 трека * 4 человека *  5 баллов =  80 баллов. Результаты сведены в табличке ниже:
ГМ-70 Ч Д 6С33С  Д Т 1 2 3 4
 сумма
Динамика 72 64 62 67  265 ГМ-70  Д Т Ч Д 6С33С
Прозрачность 72.5 68.5 62 60  263 ГМ-70 Ч Д 6С33С Д Т
Детальность 69.5 67 65.5 62  264 ГМ-70 Ч Д 6С33С Д Т
Слитность 71.5 67.5 65.5 62.5  267 ГМ-70 Ч Д 6С33С Д Т
Бас 72.5 65.5 67.5 64.5  270 ГМ-70 6С33С Ч Д Д Т
Верха 68 64.5 64 60  256.5 ГМ-70 Ч Д 6С33С Д Т
Середина 76 65.5 72 71.5  285 ГМ-70 6С33С Ч Д Ч Д
Объемность 75 67 68 65.5  275.5 ГМ-70 6С33С Ч Д Д Т
Тембральный баланс 68 65.5 65 65.5  264 ГМ-70 Ч Д,

Д Т

Ч Д,

Д Т

6С33С
delta ( max – min ) 8 4.5 10 11.5

В левой части таблицы – суммы баллов по системам, справа –  места  систем по каждому отдельному  показателю. Внизу – показатель “слитности” теста для каждой системы – насколько различными были оценки ( разброс ). Самая высокая слитность оценок  у  Ч Д  –    практически одинаковые цифры по всем 9-ти параметрам.   Самая низкая – у двухтакта  Д Т – мнения по ценке его качества разошлись сильнее всего.

Меня очень удивило, что 100 % по всем 9-ти параметрам победу одержала система ГМ70, соответственно она оказалась лучшей и по сумме – 644 балла.  На втором месте  Ч Д  – 605,  на третьем 6С33С – 590.6 и последнее – Д Т – 577.5 балла.

Минусы нашего мероприятия – прослушивание трудно было сделать слепым. Но однако некоторые моменты обнадеживают – все было объективно. Например, совершенно точно слушатели оценили, что самой лучшей чертой моих систем ( сумма оценок в шестом столбце )  – являются передача середины ( 286 баллов ) и  объемность звучания ( 275.5 балла ) – это как раз то, что я больше всего ценю в аудиосистеме.   Правда,  еще больше ценю способность создавать вовлеченность слушателя в музыкальное произведение, но мы не решились включать этот показатель в список.

Что заставляет задуматься.   Невысокая сумма баллов по передаче середины у Ч Д.   Буду работать над этим моментом. Хотя уже сейчас кажется есть ответ – это скорее всего особенность пения 2А-12. Это все-таки самой большой “лопух” из динамиков в тесте, и ему трудно соревноваться в точности передачи СЧ с много более компактными  ДГ.

Участники – всем большое спасибо:

Serg_chelentano_IMG-20230731-WA0010

Dimasik_IMG-20230731-WA0003

Igoresha_IMG-20230731-WA0004

Все такие серьезные…. Фотографии четвертого увы нет… прокол получился.

В перерывах между слушанием  еще и попили чай.  В завершение всего – посмотрели в телескоп на Солнце, были красивые протуберанцы и множество пятен – приближаемся к максимуму активности !

 

 

Varian Saturn 5.2 software for Finnigan MAT ITS40 GC/MS system

Finnigan MAT ITS40 it is somewhat unical device, it is GC/MS system, which consists of Varian 3400 gas chromatorgaph and Finnigan MAT ion trap as  detector. This kind of apparatus were produced in  90th, and it is almost miracle, that two devices with serial numbers #IS 003138 and #IS 000150 which I have in my lab still works ! First one I have purchased in 2011 from Germany ( LabExchange ). Another one –  in 2022 for spare parts directly from US,  but it was in pritty good condition and I also have managed to get it working !   One of devices ( #IS 003138 ) have equipped with Restek   30m 0.25mm capillary column 1um  RTX-1701 phase for solvents and in another ( #IS 000150 )  was  installed J&W also 30m 0,25mm capillary column with 0.25um DB-5 phase – for heavier compounds.   On the picture below is #IS 003138 purchased on 2011 from Germany:

img_6629_2

Due to my careless,  in 2018 year happened  one problem with first device ( #IS 003138 ), as due to discharge of BIOS battery of PC and failure of it’s hard disk ( what a misfortune, both happened almost simultaneosly ) I have lost all original ITS40 software.  I had in mind and it was my mistake, that  floppies, which were enclosed to the device from LabExchage in accesoary box contains copy of the software…. but a misfortune again – there was software for another Finnigan MAT device – ion trap ITD800, but it is not compatible with  ITS40.   So, what to do ?  In order to keep device running I have purchased Vx software from Adron Systems. It is quite good option, it can be run on Win7 instead of DOS, what of course  is very convenient. But Vx software contains only part of all service, which is available in  original ITS40 program.   And in 2023 finally happened to find good way  to get my ITS’s  on almost original SW !  Of course, it is almost hopeless idea to find nowadays original ITS40 software.  At  Chromatofraphy forum I seen interesting offer how this issue to solve.   ITS40 appears to work fine with Varian Saturn 5.2 software, it is a bit newer, released in  1995 year or so, but still it is DOS based and very similar to ITS40. Only is necessary to change ( or to reprogram old ones )  two EPROMs in ITS40 SAP board.   And I am very happy that in 2023 I have contacted Walter Lehmann, former Varian employee, with question about spare parts for my devices.  Also asked him about software for ITS40.   And finally it worked !! He offered me Varian Saturn software just for nothing and I only  paid  EUR 120.- for set of EPROMs. At his web-site you can find offer for EPROMS for Varian Saturn and here is also reference on software   https://www.ms-parts.ch/varian.htm .

Finally all seems nice ! But it was not easy to get this software running  on modern PCs. And here is my story how all it happened. Main problem here is that Saturn software runs under MS-DOS only, but one equisition file ios up to 700 – 800 MB, and it must be copied to some memory carrier  to pass it for  further processing to another, more powerfull  PC.  To use floppy disks for this purpose is troublesome – even HD 1.44MB floppies has too small memory.  USB flash card would be fine, but there is no USB ports in old DOS PCs…. Where is solution ?

Solution is here – USB emuator, which is produced by Bulgarian company Nalbantov Electronics.   They started to produce special USB  boards, which can be installed into old PCs instead of 3.5 or 5.25  inch drives. Initially it was intended for musicians, but later same boards were used as upgrade for old industrial equipment.  Boards are available on e-Bay, but here is reference on Nalbantov Electronics web-page: https://floppyusbemulator.com/ .

Some information about the PC, which I have purchased in 2011 together with ITS40 – it was Compaq 386/20e Deskpro.  And I  became a fan of Compaq.   It is fantastic reliable device.  I have installed on that original Compaq software – MS-DOS ver. 5.0.   Only two parts been replaced since it was produced in 1989 – BIOS battery and hard drive. Instead of crashed Conner type 33  I have installed SeaGate ST31722A Medalist, with 1.28 GB of total  memory, FAT16 formatted  to 640MB. Here is  pictures of my PC with Nalbantov card installed ( both ITSs are connected to the same Compaq – I never run ITSs simultaneously ):

IMG_20230616_190307

Lef side on the wall you can my Chemical Angel – present of my wife.   It is my safeguard !

IMG_20230714_184929

IMG_20230714_214253

and two main boot files:

 

autoexec.bat

 

@ECHO OFF

PROMPT $p$g

PATH C:\DOS

SET LMOUSE=C:\MOUSE1

C:\MOUSE1\MOUSE

SET TEMP=C:\DOS

 

config.sys

 

DOS=HIGH

DOS=UMB

DEVICE=C:\DOS\HIMEM.EXE

FILES=30

BUFFERS =32

DEVICE=C:\DOS\CEMM.EXE RAM 1024

DEVICEHIGH=C:\DOS\VDISK.SYS 1024/E:8

DEVICEHIGH=C:\DOS\CACHE.EXE 1024 /EXT

And now about the reason why Saturn 5.2 may not work on modern PCs. First of all  –  file system. If you have FAT32, you need to reformat your hard drive to FAT16.  Another reason  is memory. Saturn software uses for communication with MS a pease of RAM memory starting with C800.  Take a look into BIOS of your PC – if this region is already  occupied  ( most probably by video-card or BIOS ROM  ), this PC will not communicate correctly with your GPIB card.

Am very grateful to Walter Lehmann for Saturn 5.2 software and assistance in it’s installation.

Also many thanks to my acquaintance  Stanislav, who have helped me with selection of hard drive for Compaq PC.

Wish you good luck !

 

Акустическая система 25А44 КИНАП на динамике 4А-28

Наверно ни один другой динамик не вызывает столь много полностью противоположных мнений как 4А28. Даже написание названия – и то непонятно как правильно – 4А28, 4А-28 или 4А.28 – равновероятно встретить любое из них.

Отчасти разные отзывы бывают оттого, что разные версии этого динамика производили два завода –  Ленинградский ЛОМО  и Самаркандский завод КИНАП (  Который однако входил в состав  того же объединения   ЛОМО – расшифровывается Лениградское Оптико – Механическое Объединение ).  Причем есть версии с АлНиКо магнитом ( их выпускал Самаркандский завод ) , и есть с ферритом. Причем  если в Ленинграде выпускали только ферритовую версию в стальной корзине, то Самаркандский завод  выпускал и АлНиКо, и феррит, причем корзина у них была всегда черная, карболитовая.

Почему так приглянулись народу эти динамики ?  Видимо из-за их способности хорошо вопроизводить  речь и музыку, и другая причина – все конструкции легко разборные поэтому их так любят разным образом “улучшать” и ремонтировать.

У меня в коллекции есть два представителя 4А-28 – это Ленинградский в стальной корзине и АлНиКо Самаркандского завода.   Ферритовая версия Самаркандского завода пока не попадалась.

Мне недавно повезло – мой друг вместе Самаркандским АлНиКо динамиком отдал мне, хотя и не полностью оригинальную,  но относительно в неплохом состоянии  для своего почтенного возраста  акустическую систему 25А44 производства Самаркандского завода КИНАП 1969 года.

DSC02774_res

DSC02778_res DSC02782_res

DSC02776_res_plate

К сожалению оригинальная ткань на лицевой панели была срезана ( см фото  ниже ) и по образцу оставшейся внутри части ткани  я подобрал из того, что у меня есть  более – менее похожую.

DSC02780_res_tkan

DSC02781_res

DSC02783_backside_res

 

Для чего выпускалась эта система в то время ?  Она входила в состав лампового комплекта комплекта “Звук-1-25” (“Звук-1-25У”, “Звук-4-25”) и ее  основные характеристики
Мощность – 6Вт
Номинальное входное напряжение – 60В
( Информация взята из книги Черкасов Ю.П. Справочник киномеханика – 1988 с.306-307 )

то есть колонка входила в состав трансляционной линии и в каждом ящике АС  был понижающий трансформатор и динамик.  Поискав в интернете нашел и  схему подключения.

158447794850336814

Колонки эти ставились как контрольные в будке киномеханика,  в фойе кинотеатров для оповещения о начале сеанса, а также как фоновые.

Вот видео с участием этих колонок, только внутри ЛОМОвские 4А28 – товарищ поставил два таких ящика и сделал стерео. Трансформаторы он не использовал, сигнал с усилителя подавал сразу на динамики.

Хотел обратить вниманию того, кто ругает этот динамик –  не забывайте сколько этому творению лет ( он выпускался с 1961 года )  и для чего он был проектирован и предназначен, а также на оборудовании и из материалов какого качества это все было изготовлено. В общем не судите его строго. Для своего времени и назначения – это динамик просто шедевральный с большим потенциалом. И в умелых руках, я в этом уверен,  он даже способен красиво запеть –  и Золушка из театральных коридоров иногда чудесным образом превращается в Принцессу.   Но именно в принцессу – верзила, извините, бьющий  басом по печени  из него не получится.

А о его доработке я еще напишу.

 

**************************************************************************************************

 

 

 

Измерение параметров Тиля – Смола

Здесь пойдет речь пойдет об измерении параметров Тиля – Смола динамических головок мощностью более 3 ватт, которые предназначены для работы в акустических системах в качестве источника низкочастотного сигнала. Это могут быть как басовики ( НЧ звено в многополосной системе  или сабвуфере  ), так и широкополосные динамики.

К сожалению, в интернете есть много не совсем корректной информации на эту тему. Поэтому пришлось по крупицам собирать пригодные для работы источники.  Мне кажутся весьма странными советы замерять басовые динамики сигналом в 10мВ.  Есть много отзывов людей, которые попались в эту ловушку и потом удивлялись, что за полная чушь получается в результате такого рода измерений.  Сколько тогда на динамик надо подавать ?  Если вашей целью является обмер басовика или широкополосника с целью выбрать для него подходящее АО для повышения отдачи в нижнем регистре, то  более всего вызывающим доверие источником кажется работа фирмы SB Acoustics https://sbacoustics.com/wp-content/uploads/2021/01/Measuring-Thiele-Small-parameters.pdf  . Она,  правда, на английском языке и содержит только общую информацию с формулами, но остальное, как раз,  можно найти и в русском интернете.  Главное, что  там принято подавать на ГД  переменный тестовый синусоидальный сигнал  величиной  примерно в 1 Вольт ( то есть в 100 раз больше, чем советуют наши мудрецы ) на резонанской частоте.   При этом мощность, подаваемая на испытуемый динамик сопротивлением, например, 8 Ом будет  всего  около 0.1 ватта – это тем, кто боится  повредить  свой динамик.    Схема испытания такова:

TS_parameters_measuremement

 

Как видим,  в принципе то же самое, только добавлен еще один вольтметр Р1 и  номинал резистора не 1 Ком, а всего 10 Ом ( мощность 10 ватт ), и нужно выставить  амплитуду в 1 Вольт, и после этого амплитуду генератора уже не менять. Правда, есть требования к источнику ( генератору ) – он должен быть с выходным сопротивлением не более 0.1 Ома.  Если такого генератора нет, то между генератором который имеется в наличии и измерительной схемой нужно включить какой-то УНЧ на полупроводниках.   Или, как это сделал я –  понижающий трансформатор. У меня как источник  – старый добрый  Г3-118 с выходом 10 Вольт и выходным  сопротивлением  5 Ом. Чтобы снизить выходное сопротивление, я использовал выходной звуковой  трансформатор для лампового усилителя с Ra=1.25Ком/8Ом, который имеет коэффициент трансформации  Ктр 12.5,  и Г3-118 подключил к первичке, а измерительную схему – ко вторичке.   Этот трансформатор снижает импеданс  генератора  в Ктр в квадрате раз, то есть в  12.5 * 12.5 = 156 раз, и  тогда выходное сопротивление генератора 5  Ом делим на 156 получаем результирующее выходное сопротивление 0.03 Ома.  Менее чем достаточно для измерений.    Конечная  схема измерения параметров Тиля – Смола:

TS_parameters_measuremement_TR_2

По сути вольтметр Р1 был бы вовсе не нужен, но только для случая, когда генератор обеспечивает стабильность выходного сигнала независимо от частоты и импеданса нагрузки, а также если АЧХ усилителя ( трансформатора ) идеально ровная. Учитывая тот факт, что идеального у нас ничего не бывает,  этот вольтметр все-таки нужен ( так и советует источник по сслыке выше ). Кроме того, важно, чтобы вольтметры были однотипные, желательно вообще одинаковые, чтобы нивелировать возможную зависимость их показаний от частоты. Я использовал два обычных тестера на пределе измерения 2 Вольта.

И еще. Есть много советов использовать sweep генератор и звуковую карту для получения кривой импеданса на экране компьютера. Это конечно много удобнее, но к сожалению, для любителя это вряд ли пройдет,  т к там есть много подводных камней, на которые можно “сесть” – как в методике такого рода измерений, так и в ее аппаратурном оформлении.   Поэтому советую делать все по-старинке, задавая генератором частоты вручную  с некоторым шагом ( около пика импеданса –  1 – 2 герца, в остальных регионах 5  и более Гц  если вдали от пика ) постоить график импеданса головки по точкам. Вы ведь не делаете это серийно и скорость тут совсем не нужна, а одну головку обмерить и обсчитать таким образом можно за 15 – 20 минут. У меня получается  на графике 20 – 25  точек.

Теперь сами измерения и расчеты. Сначала по показаниям вольтметров  для каждой частоты нужно рассчитать импеданс ГД. Для это используем формулу:

Z = R * U2/(U1-U2)                                                                                                                ( 1 )

где  по схеме:

R – точная величина сопротивления R1  ( в моем случае 10 Ом );

U1 – показания польтметра Р1 для данной частоты;

U2 – показания вольтметра Р2 для данной частоты.

И строим кривую зависимости импеданса Z от частоты.  Я делал это в Excel, это позволяет не только автоматически подсчитывать величину Z, но и  построить график, по которому легче найти две величины F1  и  F2, которые нам понадобятся для вычисления параметров Тиля-Смола. Конечно, можно постоить тот же график и на миллиметровке и просто на листе клетчатой бумаги. Должно получиться что-то типа вот этого ( ниже ), на примере динамика 8ГД-1-25 ( замечание – цифры моих замеров в столбцах только для примера – я, честно признаюсь, тут немного промахнулся с выставленной изначально амплитудой, ведь  она как бы не должна быть больше 1 Вольта на частоте резонанса, а у меня она поднималась до 1.356 Вольта – но потом я перепроверял все эти цифры на меньших амплитудах и никакого существенного отличия не обнаружил. Поэтому в первоисточнике и указано, что 1 вольт выставляем “примерно”  и это хорошая новость ):

8GD1_25_cala_pic

Кстати, вот  и ссылка на Excel файл  Impedance_calc

Далее нам нужно замерить омическое сопротивление ГД – просто тестером, конечно, учитывая сопротивление проводов. Эта величина обозначается Re. Для моего 8ГД1-25 это 6.6 Ома.

Теперь мы можем вычислить сразу несколько параметров:

Fs –  резонансная частота ГД в Гц – по максимуму на кривой импеданса. В нашем примере с 8ГД-1-25 это 30 Гц, когда величина Z максимальна – 66.47 Ома – записываем  эту  величину, она нам тоже понадобится, и обозначается она как Rmax.

Ro = Rmax/Re                                                                                                                           ( 2 )

у нас это 66.47 *6.6 = 10.07 Ома, далее

Rx= SQRT(Ro) *Re                                                                                                                  ( 3 )

– величина сопротивления, на которой по графику находим две величины F1  и  F2.  Здесь SQRT ( х  )   – это квадратный корень из величины х, прошу извинить за неудобства, у меня нет возможности набирать формулы по-другому. В моем примере Rx = SQRT( 10.07 ) * 6.6 = 20.9 Ом.  На графике импеданса проводим горизонтальную линию, соответствующую сопротивлению Rx = 20.9 Ома, и в тех местах, где эта линия пересекает график импеданса опускаем линию на ось Х, и определяем значание F1  и F2.

8GD1_25_calс_F1_F2

В моем случае это 19 и 51 Гц. Теперь у нас есть все, чтобы посчитать показатели добротности – механическую Qms, электрическую Qes и полную Qts.

Qms = Fs * SQRT( Ro)/ ( F2 – F1 ) = 30 * SQRT (  10.07 ) / ( 51 – 19 ) = 2.97                ( 4 )

Qes = Qms/ ( Ro – 1 ) = 2.97/ ( 10.07 – 1 ) = 0.327                                                                ( 5 )

Qts = Qms/ Ro = 2.97 / 10.07 = 0.295

Для выбора АО полезно знать также Vas для динамика. Чтобы его вычислить, нужны еще дополнительные измерения. Во-первых, нужно знать эффективную площадь диффузора. Бывает, что производители дают этот параметр, если его нет, тогда нужно просто измерить диаметр диффузора.  А зная его  можно вычислить площадь по формуле

Sd = pi * D * D/4                                                                                                                            ( 6 )

Правильнее пользоваться системой СИ и брать D в метрах, но цифры тогда получаются совсем маленькие, не удивляйтесь.

Кроме этого, для вычисления Vas понадобится величина Cms, чтобы вычислить которую придется запастись грузиками и снова вернуться к установке описанной ранее. Я использовал круглые магнитики ( их понадобится 4 штуки, в моем случае весом около 2.55 грамма каждый  ), которые надо взвесить и попарно поставить с обеих сторон диффузора, диаметрально противоположно, чтобы они равномерно нагружали подвижную систему примерно вот так

Gruzuki

и снова замерить величину основного резонанса. Здесь нужна только величина Fs ( только обозначим ее как Fm чтобы избежать путаницы  ),  а полный график импеданса тут не нужен.

Величина Cms вычисляется по формуле:

Сms =   ( ( Fs + Fm )*(Fs – Fm )/ ( Fs * Fs * Fm * Fm ))/ ( 4 * pi * pi * m)                             ( 7 )

где m – полная масса грузов в кг.

Не удивляйтесь, у меня на клавиатуре также нет и возможности обозначить возведение в степень, поэтому вместо этого величина просто перемножена на себя.  Как результат, Cms в системе СИ получается  десятичная дробь с множеством нулей. Чтобы вычислить Vas  далее используем другую  формулу

Vas =  1.4 * 100000 * Sd * Sd * Cms                                                                                                ( 8 )

и Vas получается в кубометрах. Сделаем вычисления по нашему примеру. Резонансная частота 8ГД-1-25 после подвешивания грузов с m = 10.2 г ( это в системе СИ 0.0102 кг )  получилась Fm= 27.5 Гц.   Тогда

Cms =   (( 30 +27.5)*(30-27.5)/(30*30*27.5*27.5))/(4*3.14*3.14*0.0102)= 0.000525

и подставляя эту величину в формулу ( 8 ) получаем

Vas = 1.4 * 100000 * 0.0314 * 0.0314 * 0.000525 = 0.0726 кубометров, или 72.6 литра.  Sd принят 0.0314 квадратных метра и вычислено по формуле ( 6 ) исходя их диаметра диффузора 20 см.

В результате  замеров у меня получились такие параметра динамика 8ГД-1-25:

Sd  0.0314 кв.метра

Cms 0.000525

Vas 74 литра

Re 6.6 Ohms

Qms  2.97

Qes 0.327

Qts  0.295

Как видите, если разобраться, то ничего особо сложного нет.

Да, и конечно  перед проведением замеров динамик  надо обязательно размять до стабилизации Fs, если это новый динамик это может потребовать 5 – 10 часов, а если винтажный с хранения – то даже сутки и более. Разминку можно делать  подачей того же 1 вольта  ( на динамики большой мощности можно и поболее –  вообще есть рекомендации подавать максимальный сигнал до появления клиппинга )   на частоте близкой к резонансной или чуть ниже нее ( до  0.8 от  предполагаемой Fs ).

 

*************************************************************************************************