Усилитель Radiotehnika-020 или УКУ-020 – ремонт сетевого трансформатора

Как-то я купил с рук тюнер Onkyo и впридачу, можно сказать даром мне отдали некогда очень популярный и выпущенный огромным тиражом усилитель  Рижского производства RRR Radiotehnika ( фото из интернета )

 

photo

 

У нас  за ним закрепилось название   УКУ-020  или “укушник”.

Корпус моего  “подарка”  практически рассыпался у меня в руках,    его надо клеить – вот такой набор “сделай сам”  получился 🙂

Набор_IMG_20250309_093043

а  сетевик   –   с отметинами сермяжного “русского ремонта”

IMG_20250308_133217

Ну и конечно жуткая грязюка и килограмм пыли.   Почему я взял этот хлам ? Очень простой ответ – я много наслышан от компетентных людей о его неплохом звучании.    И это несмотря на какую-то совершенно дикую коммутацию блоков и внешне  неряшливый монтаж.   Вторая причина – прибор  почти  комплектный ( недостает, вернее сломана задняя крышечка сетевого входа ) и  можно сказать  некопанный – только сетевик изуродован маленько.    Но это все поправимо и я потихоньку взялся за его восстановление – меня всегда увлекает такого рода работа.

Первым делом снял сетевик и соединив выводы 3 – 3′ перемычкой подключил к сети выводы 1 и 1′.  Работает, но сильно гудит.  Вот за это наверно его и избили  молотком народные “умельцы”.  Разобрал трансформатор, к счастью катушки уже пластиковые – картонные от времени обычно раскисают и деформируются.   Важно  не перепутать взаимное расположение подковок, поэтому если на них нет цветных точек, то самое время их поставить ( я брал маникюрный лак ).

Дальше нужно соскоблить ножом остатки черного клея до металла, и наждачным порошком ( я использовал карборунд М10 –  то есть 10 микрон  ) шлифуем поверхность подковок поставив одну рожками вверх и второй водим с прижимом по нижней с небольшим выносом – делая штрихи или вверх-вниз или круговые,  а лучше и те и другие по очереди.  Как только вы начнете шлифовку,  сразу станет ясно насколько криво был разрезан сердечник – вся поверхность разреза должна стать матовой.  Но это бывает очень редко – чаще всего приходится долго и упорно работать,  пока  хотя бы процентов 80 – 90 поверхности не станла матовой.   Обычно этого бывает достаточно и можно приступать к склейке.

IMG_20250309_080536

Клеить лучше эпоксидной смолой ( двухкомпонентная ), добавив к ней порошка магнетита ( оксид железа Fe3O4 ), и если у вас такого порошка нет, то разотрите  какой-нибудь ферритовый сердечник – для этого понадобится ступка и очень мелкое сито. Порошок при растирании между пальцами не должен давать ощущения наличия крупинок. Присутсвие крупной фракции недопустимо – иначе у вас подковки не прилягут плотно и трансформатор будет опять гудеть.    Fe3O4 можно купить на е-Вае,   может и на Алиэкспрессе есть – забейте в поиске Magnetite powder.    Только нечаянно  не купите железный порошок ! Но об этом ниже.

Второй нюанс, который обычно не берут во внимание и из-за этого у многих  начинающих случаются неудачи.   Отверстия в катушках, в которые вставляются подковки сделаны с хорошим запасом по размерам. Это  конечно хорошо  потому что  заметно облегчает сборку. Но иногда это приводит к тому, что мы не видим,   насколько хорошо произошло  совмещение подковок – а ведь широкое отверстие дает возможность очень значительного  несовпадения из-за смещения  – и тогда снова проблема – у нас снижается эффективное сечение магнитопровода и трансфоматор снова будет гудеть.    А как обеспечить это совмещение ?    Не такая  уж и простая задача !    Я поступил так – взял 0.25мм  кусочек   пленкосинтокартона – при желании его можно найти  ( в Риге этим материалом торгует фирма “Atlantija” , Deglava iela 60 ) :

и сделал две прямоугольного сечения оправки-направляющие  точно по форме сечения подковок и по высоте катушек ( на фото   ниже – только принцип, оправка еще не склеена  и подковки не зашлифованы ).

trans_IMG_20250309_103557

Этот материал имеет гладкую скользкую поверхность, что его выгодно отличает от обычного картона, который легко разрушется острыми краями подковок и пока вы будете подковки двигать навстречу друг другу,  острые края нарежут кусочков со стенок оправки и эти кусочки  потом будут зажаты между подковок  –  и будет снова беда !     А вот пленкосинтокартон не царапается так легко и используя эти направляющие, можно почти идеально совместить сечения  обеих подковок.  Последовательность работы такая.  Вставляем обе направляющие в катушки, вставляем нижнюю подковку, ставим все это на стол  Буквой U подковки вниз  и рожками вверх  и немного вытягиваем направляющие вверх, чтобы они на 2 -3 мм возвышались над верхним срезом катушек – это облегчит последующую сборку.

Trans_2_IMG_20250309_104105

Потом смешиваем порошок магнетита с компонетом А эпоксидки до образования густой сметаны, добавляем компонент Б  ( отвердитель ) и перемешиваем. Берем ненужную кисточку и палочку для чистки ушей и наносим немного клея на  обе поверхности нижней подковки (  уже внутри катушек  ) чтобы покрыть примерно всю поверхность  контакта.  Нужно совсем немного клея !   Не беда, если он попадет на стенки оправки.    После этого берем верхнюю половинку ( подковку ) и не забывая  правильно совместить поставленные ранее точки,  и аккуратно, не спеша ( эпоксидка начинает твердеть только через 2 – 3 часа при нормальной температуре – у нас уйма времени !  )  вставляем  ее в направляющие синтокартонной оправки.   Стягиваем  все это  струбциной  до полного высыхания.    При 20 град Цельсия это примерно  сутки.   Но можно это дело  сильно ускорить и заодно повысить прочность соединения – подогреть все это  в сушильном шкафу при 50 – 60 градусов или  просто подключив к первичке 10 – 12 вольт постоянки от  любого БП оставить на ночь  ( выводы первички скоммутированы  под 240 вольт  – то есть  выводы 3 – 3′  замкнуты перемычкой, напряжение  подаем на выводы 1 – 1′).

После такой  вот аккуратной шлифовки и сборки трансформатор нем как рыба.   Даже без пропитки.   Чтобы не пегружать  трансформатор,   лучше поставьте  в УКУ селектор  входных напряжений на 240 Вольт.

У меня после сборки ток холостого хода был 108 мА.   Для ПЛ-сердечника это вполне удовлетворительный рузультат. Вот так выглядит мой подопечный сейчас, к сожалению следы варварского избиения молотком все-таки  остались.  Но транс исправно работает.

Трансф_перед_пропиткой_IMG_20250309_140618

И еще один показатель качественной сборки трансформатора – половинки магнитопровода не звонятся тестером на КЗ.  Очень плохо если КЗ все-таки есть – тогда из-за токов Фуко магнитопровод будет быстро насыщаться и гудеть. И тут сделаю отступление по поводу порошка магнетита ( или феррита ) и вообще зачем какой-то порошок надо добавлять.  Очень просто – этот порошок выполняет сразу две очень важные функции:  первое – он обладая магнитными свойствами улучшает магнитную проницаемость зазора и тем самым повышает  индуктивность обмоток.  И второе – о чем обычно мало кто пишет в интернете – он электрически изолирует половинки магнитопровода и не дает возникнуть токам Фуко.  Поэтому понятно, что обязательным свойством порошка должно быть полное отсутвсие электропроводности !  Как смешно и одновременно  грустно читать в интернете советы “бывалых” добавлять в эпоксидку мелкие железные опилки или карбонильное железо – не делайте этого ни в коем случае !  Также я  не пропитываю сетевые трансформаторы парафином – это имхо  бессмысленная работа –  парафин  слишком легкоплавкий, а сетевой трансформатор при работы иногда нагреватеся.   Ну хотя бы тогда  Церезин, а лучше всего  – специальный трансформаторный лак, который можно заменить на пентафталевый  или друхкомпонентный паркетный,  и обязательно под вакуумом.    Если вакуумной установки у вас нет, то за пропитку лучше вообще не браться.

Для информации – нумерация отводов трансформатора ТС100-2:

ТС100_2

О дальнешем  ходе восстановления этого прибора  буду дополнять  по ходу дела.

 

 

Ремонт лампы ГМ-70

Хочу поделиться опытом.  У меня в усилителе SE30 “Этажерка” стоят на выходе две лампы ГМ-70.  И одна вышла из строя – как бы сгорел накал – она перестала светиться.  Прозвонил тестером – в самом деле – сопротивление – бесконечность. Удивился я – в таком щадящем режиме работает лампа – 19 вольт на накале и рассеиваемая мощность  не более 90 ватт ( при 125 ватт допустимых ). Хорошо что перед тем как выкинуть лампу в мусор,   сначала отпаял  и снял цоколь.  Что оказалось  ?!  Отвалился  ( наверно  заводской брак )  гибкий медный  провод, который соединяет цоколь с коротенькими торчащими из стекла колбы отводами.

IMG_20250111_140916

Прозвонил накал повторно.   Да, он оказывается цел и невредим !   Чтобы починить, нужна контактная сварка.

Посмотрел я интернет и нашел чудесный ролик – https://www.youtube.com/watch?v=jpG_PMKsWGQ&t=1160s   и вытащил  давно уже валявшийся у меня в углу транс от микроволновки. За один час сделал простейшее сварочное устройство.  Вторичка – 2 витка  многожильного провода  для заземления  сечением 10 квадратов, дает в покое 3 вольта переменки.   Специальных  медных наконечников и держателя не делал.  Практически держа все на коленках одну клемму поставил снизу припаемого контакта, вторую поднес сверху, прижал и …….   через 1 секунду все было готово ! Держится так, что не оторвать.

IMG_20250111_141358

IMG_20250111_141558

Одна проблемка осталась –  чем правильно приклеить обратно цоколь к  стеклянной колбе. Если кто знает – поделитесь в комментах.   Спасибо !

Намоточный станок “Meteor 01B” и чудеса современного электроснабжения

Года три – четыре обратно по случаю приобрел у знакомого этот станок. Винтажный, сделан в Швейцарии еще в прошлом веке.

General_view

Добротно сделанный, в полностью рабочем состоянии –   намотал я на нем немало трансформаторов для своего аудио – и выходных и сетевых.

За все это время случилось две поломки. Примерно год назад с жутким грохотом и последующим дымом взорвался блокировочный 0.22мкф конденсатор в блоке питания.   Долго с соседних деталей соскабливал черную сажу и  обывки  фольги.  Заменил его на современный  желтый такой же емкости, на фото его видно.

IMG_20250111_104606

 

Сейчас снова в этом же блоке, но уже на плате питания +24 Вольта тихо умер супрессор на 35 вольт, а вместе с ним и микросхема  MC7824ct.

 

IMG_20250111_104435

 

Я не знаю какое сетевое напряжение считалось нормальным в Швейцарии в 70-е годы прошлого века ( скорее всего – 220 Вольт, по крайней мере под сетевым разъемом есть надпись “220V 50Hz ), но нашу сеть этот прибор переносит  очень плохо.   Напомню, что у нас в сети меньше чем 235 вольт не бывает вообще  никогда ( ессно,  кроме случаев когда оно пропадает совсем 🙂 ), а обычно это 238 – 242 вольта.  Иногда подскакивает до 245, может даже и выше – я не стою  у розеток с приборами постоянно.  Понятно, как бы добротно небыл сделан  Швейцарский прибор, таких перегрузок он  иногда не выдерживает.  Ради интереса замерил сколько сейчас в сети на момент написания это статьи.  Ну конечно, сегодня суббота – и вот вам  пожалуйста –  239 вольт ! Замерял прецизионным цифрвым вольтметром, точность +- 0.5 вольта.

И вот схема  24 вольта БП  из приложенной к прибору документации.   Супрессора в ней еще нет –  вместо него  указан конденсатор С2   –  1мкф,   видимо мне достался уже более новый, усовершенствованный прибор. Если бы супрессора небыло, то видимо сгорел бы еще и  мощный транзистор 2N3055.

PSU_24V_schematicpng

 

Одно радует – я не один такой невезучий –  слышу часто что  то тут то там у моих знакомых  горят сетевые трансформаторы и другие детали в БП в самых разных приборах.    А  причиной тому  –   очень умные продавцы электроэнергии,   которые хорошо усвоили закон Джоуля-Ленца  –  количество проданных потребителю  киловатт-часов зависит от напряжения сети аж во второй степени !

 

**********************************************************************************************************************************************************************************************************************

Самодельное устройство для намагничивания Алнико магнитов

Почему именно только для Алнико  ? Конечно намагничивать можно и другие. Пока делал эксперименты, я намагнитил все отвертки и плоскогубцы, которые служили мне балластом для имитации подопытного магнита  🙂  .   Для неодимовых сила поля  моей конструкции слишком мала и полноценно их намагнитить не получится.  Возможно, можно применить эту установку для ферритов, но я не пробовал.

Все началось с того, что когда перебирал динамики 4А-28  Самаркандского завода ЛОМО, я еще не знал, что разбирать магнитную систему Алнико нельзя – этот магнит теряет свою силу – то есть частично размагничивается. Для замера индукции в магнитном зазоре В ( измеряется в Тл – Тесла ) я купил  прибор TD8620,  цена на e-Bay была 65 Евро. Немало конечно, но без этого девайса оценить силу магнитной системы динамика очень трудно.

Magnet_meter_IMG_20240130_210055

По паспорту на диамик 4А-28 магнитная индукция в зазоре должна быть 0.8 Т ( 800 миллиТесла ).  Замер на картинке сделан ДО разборки магнита – но не подумайте, что  был такой чудесный динамик !  Как почти все в СССР,  магнитная система собрана ужасно криво – магнитный зазор очень неравномерный – с противополжной стороны величина индукции до разборки была 740 мТ.   Так что среднее ( 872 + 740  )  получается чуть выше 800 мТ  – то есть в ГОСТ все-таки  входит ! После переборки магнитной системы средняя индукция стала  всего 550 мТ –  надо было ее заново намагнитить. Поэтому еще раз – помните – Алнико  магнитую систему ДГ  разбирать нельзя – их потом придется намагничивать заново,  причем обязательно в собранном виде.

Стал изучать тему.  Очень много полезного почерпнул на форуме Сергея Сергеева – он сам сделал установку и намагнитил намного бОльшую в габаритах систему от 4А-32.

http://hiend.borda.ru/?1-5-0-00000044-000-0-0-1643959506

и ее продолжение

http://hiend.borda.ru/?1-5-0-00000354-000-0-0-1707361824

а также интересной и полезной мне показалась ветка на ldsound.ru

https://ldsound.club/threads/namagnichivatel-magnitov.499/

Теперь о моей конструкции, которой я и намагнитил МС от 4А-28.   Вернее, пока это макет, в котором  требуются дополнительные мероприятия по ТБ –  есть масса голых контактов.   Поэтому будьте внимательны и осторожны  – в установке есть напряжения до 400 вольт, что может быть смертельно опасно !

Вот начальная ее  схема

schem_start

И ее фото

Magnetizer-IMG-20240203-194127

Как каркас индуктора взята 110 мм муфта от канализационных труб, на нее намотано 11 витков многожильного медного провода сечением 6 кв.мм в изоляции – я взял провод для заземления длиной около 5 метров.  Витки зафиксировал  полипропиленовыми стяжками, но этого оказалось недостаточно – мощные импульсы тока иногда их рвут – поэтому витки дополнительно промазал клеем момент.

Конденсаторы С1 – С6  – общая емкость 16800 мкф, на 400 – 450 вольт – всего 10 конденсаторов ( а не 5 как на схеме ). Вообще-то для улучшения отдачи тока на индуктор и для  снижения суммарного ESR батареи, старайтесь собрать батарею из максимального количества конденсаторов – то есть три конденсатора по 1200 мкф лучше чем один 3600, и десять конденсаторов по 1000 мкф много лучше, чем один на 10000 – хотя казалось бы  по арифметике это одно и тоже.

Зарядка идет через диод Т6А100 на 1000 вольт и 6 ампер и балластную лампу накаливания 100 – 300 ватт мощностью ( чем больше мощность лампы, тем быстрее зарядится батарея ).

Все сделано максимально просто -разряжаются конденсаторы на индуктор вручную –  просто замыкая медные контакты S2.  К  длинному отводу индуктора присоединен колпачек ( заглушка )  на 22 мм из твердой меди, он своим боком замыкается на плоский участок медной рейки ( я взял рейку крепления отводов заземления – они продаются в магазинах электроинсталляции. На нее, кстати, только с другого ее конца очень удобно прикрепить конденсаторы  у которых есть винтовые выводы ).  Но у меня часто случалось, что  колпачек приваривается к рейке намертво  !   И приходится потом долго его отковыривать….  🙂  Да, и насколько важен хороший контакт для подачи мощного импульса тока можно заметить по  тому, что лучше всего ( до более высоких значений В ) намагничивается магнит тогда, когда контакты свариваются вместе.  Именно поэтому в последствии вместо контактов S2 лучше поставить  мощный тиристор.

Чтобы оценить, выдержит ли тиристор ударный ток в импульсе, нужно посчитать суммарное сопротивление всей цепи. Начнем с  активного сопротивления индуктора.   Средний диаметр витка 12 см ( 0.12 м ), значит длина витка  будет пи * диаметр = 0.377 метра. Вся длина провода 11 витков * 0.377 = 4.2 метра. Удельное сопротивление меди – 0.0175 Ом*мм.кв./м находим из справочника. Значит если у нас сечение 6 кв.мм. и длина 4.2 метра, то сопротивление индуктора у нас будет 0.0175 * 4.2 / 6 = 0.012 Ома.

Чтобы в первом, самом грубом приближении  вычислить пиковый ток через тиристор нужно просто разделить напряжение на конденсаторах ( планируется 350 вольт ) на сопротивление индуктора – 350  В / 0.012 Ом = 29 000 Ампер.  Например, тиристор ТЛ271-320  на ток 320 А в пике выдерживает ударный ток ( по паспорту )  9 000 Ампер.  Получается, что если добавить неучтенные мной сопротивления контактов и индуктивное сопротивление  индуктора, то возможно, выбранный тиристор и выдержит нагрузку.

Во втором приближении учтем импеданс конденсаторов.  ESR конденсаторов предварительно я замерил – в среднем 0.05 Ома.  У меня 10 кондесаторов, ESR каждого получаются влючены параллельно ( вот почему выгодно параллелить конденсаторы ! ) ,  то их суммарный ESR будет ниже.  Но тут нюанс в том, что параллельно включены не  ESR конденсаторов, а их последовательная цепь с индуктивностью обкладок, то есть включая параллельно конденсаторы, мы параллелим импеданс 10-ти отдельных конденсаторов.  Который в сумме конечно становится ниже,  но ESR  не уменьшится в 10 раз !  На сколько – нужно еще определить.    Для этого я подключил мою батарею конденсаторов к измерителю импеданса HP ( который к счастью был у меня дома – знакомый дал попользоваться ) и получил в общем ожидаемую величину, которая оказалась примерно по середине между 0.05 Ома ( ESR каждого конденсатора ) и 0.005  –  то есть  0.011 Ома.  То есть сумма активного сопротивления индуктора и импеданса конденсаторов уже становится 0.012 + 0.011 = 0.023 Ома.

Давайте теперь попробуем учесть индуктивное сопротивление индуктора.  Сначала нужно рассчитать индуктивность катушки:

Где мю – магнитная проницаемой среды, для воздуха и пластмассы ( сердечник ввиде намагничиваемого матерала пока не учитываем )  это 1 ( единица ),

мю нулевое – магнитная постоянная вакуума, с системе СИ равная 4 * пи * 10 ** ( -7 )  Гн.м или 1.26 * 10 ** (-6 ).

N – количество витков соленоида

S – площадь соленоида, кв.м.

l – длина соленоида, м.

Подставляем наши данные – 11 витков, диаметр катушки 0.12 м, ее длина – 0.1 м и получаем индуктивность нашего индуктора 0.000019 Гн. Это конечно очень маленькая величина, но учитывая высокую крутизну подаваемого импульса, стОит все-таки попробовать рассчитать постоянную времени.   Она будет  равна RC, где R  – полный импеданс цепи, который мы пока не знаем, но в первом приближении берем то, что известно – сумму активного сопротиваления индуктора и импеданс кондесаторов –   0.023 Ома,   емкость 16800 мкф  конденсаторов в фарадах будет  примерно ( округляем ) 0.017 Ф. Значит постоянная времени  t будет 0.023 * 0.017 =  0.000391 сек. Это соответствует частоте f = 1/(2*pi*t) = 400 Гц. Откуда можем посчитать индуктивное сопротивление  R соленоида без сердечника на этой частоте  =  2 * Pi*f*L =  2*3.14*400*0.000019 = 0.0477 Ом.  Однако !  Это даже больше, чем активное сопротивление + импеданс конденсаторов  ( помним –  было 0.023 Ом ). Итого, общий импеданс цепи ( импеданс конденсаторов + индуктивность индуктора + его активное сопротивление ) = 0.011+0.012+0.0477 = 0.071 Ома.  То есть уже во втором приближении максимальный рассчетный ток  будет 350 вольт разделить на 0.071 Ома и это равно 4900 Ампер.   То есть второе  приближение  дает  уже двукратный запас по ударному току тиристора – 9000 Ампер.

Если сделать и вторую итерацию в приближении к верной цифре постоянной времени, теперь уже с учетом полного импеданса цепи, который мы вычислил раньше – 0.071 Ома. Тогда RC будет 16800 мкф  * 0.071Ом = 0.0012 сек, что соответвует частоте 130 Гц, и индуктивное сопротивление индуктора на этой чатоте станет меньше –  Z = 2* 3.14*130*0.000019 = 0.016 Ома, и суммарный импеданс цепи снизится до 0.071 – 0.0317 = 0.0393 Ома, что соотвествует току через тиристор 350/0.0393 = 8900 Ампер.

Повторяя указанные выше итерации и принимая, что ряд будет сходящимся ( вот таблица итераций ):

Iteracijas

а затем используя величину общего имапеданса цепи Rtot мы  получим среднее от двух последних величин тока  –  8900 и 4900  ампер и это будет 6900 Ампер, а постоянная времени – ( 0.000391 + 0.0012 ) /2 = 0.000795 сек, что соответствует частоте 200 Гц.   При этом индуктивное сопротивление индуктора на этой частоте будет 0.024 Ома (  а общий импеданс цепи 0.047 Ома ).  То есть почти половина !   Можете догадаться, что будет если намотать, скажем, 50 витков, как иногда советуют…

На форуме любителей лампового звука http://hiend.borda.ru/?1-5-0-00000354-000-60-0, по совету одного из форумчан,  чтобы замерить  реальную величину импульса тока,   я собрал простенькую схемку из диода D3, конденсатора C7 и цифрового вольтметра V:

schem_2

и  замерил фактическую силу тока цепи при помощи 1000 амперного шунта R3.   Максимальное значение тока оказалось 6960 Ампер при напряжении разряда 340 вольт, что почти совпадает с приведенной выше рассчетной цифрой ( 6900 Ампер при 350 Вольт ).   Я бы сказал – прекрасное совпадение  приведенного выше рассчета с фактическими данными !     Вольтметр  использован  цифровой со входным сопротивлением > 1 МОма, конденсатор С7 – МБГО-2.

В приведенной выше схеме уже видите тиристор вместо простого контакта, у меня поставлен купленный на е_Вае 1600V 200А тиристор MFC200-16, как демпферный диод – тоже 200 амперный диод MD200A на 1600 вольт.  Хотя они оба предполагаются быть установленными на радиатор, в нашем случае это не нужно. Конечно, здесь подошел бы и старый добрый ТЛ217-320, но он у меня остался прозапас.

И вот как выглядит макет сейчас

Питается установка от сети переменного тока, после заряда конденсаторов через лампу La1 накаливания мощностью 300ватт выключатель S1 отключаем и запускаем тиристор  переключателем S2 переводя его подвижные контакты в нижнее положение, когда конденсатор С3 разряжется на управляющий электрод тиристора, он открывается и происходит разряд батареи конденсторов С1 – С6 на индуктор.  Если прямо от сети, то конденсаторы заряжаются до 320 – 340 вольт, если нужно больше, то можно установку питать от  школьного 4 амперного ЛАТРа, который повышает переменное напряжение до 250 вольт  – тогда можно получить до 380 Вольт постоянки.   Для выбранных тиристоров и демпферного  диода – это видимо предел. Если захочется повысить напряжение на конденсаторах еще выше, то скорее всего нужно будет не только заменить тиристор и диод на более мощные, но и  домотать несколько витков индуктора.

Еще раз выражаю свою благодарность участникам форума Любителей Лампового Звука за  советы и помощь.

Кривые B – H магнитопровода и расчет накального трансформатора для ГМ-70

Мне понадобилось намотать  накальный  трансформатор для лампы ГМ-70, то есть по сути  – сетевой трансформатор. Под рукой есть Ш-образное железо, но я не знаю его параметров. Изрядно покопавшись в интернете обнаружил, что несмотря на то, что есть очень много публикаций на эту  тему, именно четкой методики определения параметров магнитопровода, которые необходимы для расчета трансформатора, по сути нет. Есть только отрывочные данные –  или совсем примитивные наукообразные  рассказы как сделать какой-то трансформатор с по сути непредсказуемыми параметрами на основе простеньких  эмпирических формул начала прошлого века ( которые как правило дают неоправданно завышенные  габариты устройства ), или философствования с интегралами и дифференциалами, но ноль на выходе. Попытаюсь  заполнить этот пробелл, но только пока для Ш-образного сердечника. Хотя если сможете определить сами среднюю длину магнитной линии ls для другого типа сердечников – методика все равно подойдет.

Прежде всего нам нужны кривые намагничивания  B – H  – то есть зависимость магнитной индукции от напряженности магнитного поля Н.    Наклон этой кривой даст нам величину магнитной проницаемости имеющегося материала – мю.  Нюанс в том, что  магнитная проницаемость трансформаторного железа – величина не постоянная и она в свою очередь зависит от напряженности магнитного поля Н.  Кривую этой зависимости мы тоже построим. И после этого приступим к рассчету  самого  трансформатора.

Schematic

Для начала собираем простую схему из Рисунка выше.  Понадобится регулируемый  автотрансформатор П ( я взял школьный ЛАТР ), который сначала устанавливают в крайнее положение, чтобы на выходе был ноль вольт. Шунт R1 – это два двухваттных резистора по 1 Ом, включенных параллельно, но точный номинал не важен – просто изменится величина сопротивления, которую подставляем в рассчетную фомулу. Вместо варианта шунт + вольтметр можно использовать просто амперметр. Для трансформатора мощностью 100 – 200 ватт предел измерения должен быть 2 – 3 ампера.  Хотя, конечно лучше и точнее  использовать  все-таки шунт и  тестер – включенный в режиме миливольтметра переменного тока. Конденсатор С  – неполярный, берем емкостью 4- 10 микрофарад, я брал МБГО 10 мкф на 160 Вольт.   Резистор R2 – около 100 КОм.

IMG_20220907_073350_1

Теперь сам трансформатор. Надо хорошо, тщательно  собрать и подогнать железо так, чтобы обеспечить минимальный магнитный зазор.  Я для этого использовал струбцину.  На основном керне я намотал тестовую первичку – 100 витков провода 0.6мм ( можно провод брать и толще ), вторичка у меня тоже 100 витков, можно мотать тем же проводом, но я уже намотал проводом того диаметра, который будет в законченном изделии. Для замеров же это роли не играет.

Обращаю ваше внимание, что вторичка у меня намотана на боковом стержне магнитопровода.  Если вы не собираетесь мотать такого вида трансформатор, а будете вторичку наматывать классическим, обычным способом поверх первички – то мотайте свою тестовую  вторичку в 100 витков  тоже  на центральном стержне. Может быть только положите на всякий случай слой изоляции между обмотками. И не перепутайте – в формулу расчета В в этом случае подставляйте не площадь сечения бокового стержня ( как это делал я ), а площать сечения центрального ( которая обычно в два раза больше ).

Замеры делаем постепенно подавая на первичку напряжение от ЛАТРА,  результаты замеров записываем в два столбика –  Ux  и Uy. Самое большое напряжение, которое можно подавать на первичку примерно соответствует тому моменту, когда она начинает заметно нагреваться – тогда замеры заканчиваем. Хорошо, если у вас получится 12 – 15 замеров с примерно равными интервалами.

Excel_table

Приступаем к обработке данных – их удобно сделать в Excel, можно и вручную. Формулы расчета Н ( (1) напряженность магнитного поля ),  В ( (2) –  магнитная индукция ),   и мю ( (3) магнитная проницаемость ):

H= Ux*1.41*N1*/(R1*ls)                         (1)

Ux – измеренное напряжение на шунте R1,  Вольт;

N1 – количество витков первички;

R1 – сопротивление шунта, Ом;

ls – среднаяя длина магниной линии магнитопровода в метрах, для Ш-образного сердечника вычисляется:

Ls_calc

B= Uy* 1.41*R2*C/(N2*S)         (2)

Uy – измеренное значение напряжения на конденсаторе С, Вольт;

R2 – сопротивление R2, Ом,  в нашем случае это 100 000 Ом;

С – емкость конденсатора в фарадах, у меня это 10 мкф или 0.00001 Ф;

N2 – количество витков вторички, у нас это тоже 100 витков;

S – сечение стержня магнитопровода, в метрах квадратных.

mu =  B/( MU0* H )                       (3)

B – магнитная индукция ( вычисленная по формуле (2);

Н – напряженность магнитного поля, вычисленная по формуле (1);

MUo – магнитная постоянная вакуума, равная (   4*3.14*0.0000001 ).

После подсчетов к двум колонкам измеренных значения Ux  и  Uy  ( отмечены желтым в таблице ) мы добавляем  еще три колонки из  вычисленных значений В, Н и мю.   После этого строим графики зависимости  величин В и мю от Н.   Я это сделал очень просто и быстро в том же  Excel.

На графике зависимости В от Н  обычно есть выраженный излом – когда насыщается сердечник, и быстро растущее вначале значение В начинает расти заметно медленнее. Это и есть то  максимальное значение В, которым  можно задаваться при проектировании трансформатора. В моем случае это было примерно   1.3 Тесла, что обычно и рекомендуют.   Большинство промышленных трансформаторов  в целях экономии материалов обычно работают в области  даже немного более высоких значений В, но платой за это будет  повышенный коэффициент гармоник и более высокий ток холостого хода, приводящий к нагреву и гудению трансформатора.

 

B_H_curve

mu_curve

 

Второй график – зависимости мю от Н.  Как видим, есть выраженная зависимость магнитной проницаемости от напряженности магнитного поля, причем выше того же значения  Н  = 350 А/м  магнитная проницаемость резко снижается ниже 3000.    Для дальнейших расчетов принимаем мю равным 2500, что будет примерно средним значением в рабочей точке. Правда, мю нам понадобится только для расчета выходного трансформатора.   Для сетевого достаточно только В – магнитной индукции.

Теперь сам расчет.   Первый шаг – определить ЭДС одного витка первичной обмотки, используем всем известную формулу из интернета:

E = 4.44 * f * B *  S * К / 10000  где

f – частота сети, берем 50 Гц;

В – полученное из графика В – Н значение индукции,   подставляем 1.3 Тл ;

S – сечение магнитопровода в см квадратных, у нас это 12.5 ;

К – коэффициент, учитывающий неплотность заполнения центрального стержня магнитопровода железом, принимается обычно около 0.9 ;

После подстановки данных получаем 0.325 вольта на виток, или 1/0.325 = 3.08 витков на вольт.

Количество витков первички определяем перемножением 3.08 на напряжение в сети ( 235 Вольт в нашем случае, берем с запасом, потому что 230 бывает далеко не всегда ) и получаем 723 витка.   Диаметр первички d  в мм вычислял по формуле

d= 0.02 * SQRT ( I )

где  I –  ток в обмотке в милиамперах.  Как его посчитать ?  У нас нагрузка – две лампы ГМ-70 с напряжением накала 20 Вольт и током  3 ампера,  то есть 60 ватт одна, то есть всего  – 120 ватт.  При КПД трасформатора около 0.85,  берем  с  некоторым запасом мощность 150 ватт, тогда ток будет 150/230 = 0.65 А.  Подставляя 650мА в формулу получаем диаметр провода 0.51мм.  Я взял с небольшим запасом провод 0.55 мм по меди.

Далее –  вторичная обмотка. Принимая во внимание, что вторичка у меня  намотана на боковых стержнях магнитопровода, там количество витков на вольт увеличивается вдвое – то есть 3.08 * 2  = 6.16 витков на вольт.   Отсюда, чтобы получить 10 вольт на одной  вторичной обмотке ( напомню, их всего в моем трансформаторе четыре –  и они потом соединяются попарно, давая две обмотки по 20 В ), нужно  примерно 62 витка.  Диаметр  провода считал по той же формуле, получается 0.02 * SQRT ( 3000 ) = 1.095 мм,  я взял  провод 1.25 мм ( вместе с лаком ).

На самом деле я намотал 715  витков первичку и по 60 витков вторичные обмотки, сознательно немного снизив напряжение накала ГМ-70, что на мой взгляд благотворно сказывается на звуке и немного продлевает срок службы лампы.   Эта генераторная лампа создана для работы в очень жестком режиме с импульсами тока до 0.8 ампера, что в случае моего  УНЧ совершенно не требуется.   Вячеслав, мой знакомый из Израиля уже построил похожий каскодный усилитель на ГМ-70, так он снизил питание накала даже  до 15 вольт и вполне доволен результатом.

Что получилось после сборки.    Ток холостого хода – 47 мА.     Стендовые испытания трансформатора показали его отличные нагрузочные характеристики и способность долго работать без перегрева – его максимальная температура не поднималась выше 50 градусов. При напряжении на первичке 235 вольт, на вторичках под полной нагрузкой было 19.4 вольта,  теоретически должно быть 19.71  –  то есть “проседание” напряжения всего  1.5 %.

После испытаний трансформатор был под вакуумом  пропитан лаком и затем высушен при 120 градусов в сушильном шкафу в течение 3 часов.  Даже под полной нагрузкой нем как рыба.

 

***********************************************************************************************